

Ahmad Shukri Mohd Noor
Farizah Binti Yunus

Fadzli Syed Abdullah

Lab Module

Version 1.0

 Things of
Internet

Faculty of Ocean Engineering Technologies

and Informatics

CSM3313 - Internet of Things | Lab Module

ii

Synopsis

This course introduces concepts and main components of the Internet of Things (IoT). The

student will be exposed to the concept of IoT thru the network technology and protocol as

well as the wireless environment. Students also will be exposed to data analytics in an IoT

environment. Exposure to the selected IoT application development will be carried out in the

lab to increase the student learning experiences. This course is essential for introducing

students to the fundamentals of the IoT and its relationship to everyday life.

Ahmad Shukri Mohd Noor

Farizah Binti Yunus

Fadzli Syed Abdullah

Version 1.0

2023

CSM3313 - Internet of Things | Lab Module

iii

Table of Contents

Synopsis ... ii

Table of Contents .. iii

Topic 1: Programming Languages for IoT .. 1

Module 1: Getting Started with Python [1hr] ... 2

Module 2: Python Basic Programming [2hrs] ... 5

Module 3: Python Control Structure [3hrs] .. 14

Topic 2: Architecture and IoT Network Protocol ... 17

Module 1: IoT IT Infrastructure [2hrs] .. 18

Module 2: Basic IoT Network Design [1hr] ... 34

Topic 3: IoT Application Programming... 41

Module 1: Getting Started with MicroPython [1hr] ... 42

Module 2: Basic MicroPython Programming [2hrs].. 49

Module 3: ESP32 Programming [3hr] ... 55

Topic 4: Web Apps Development for IoT ... 62

Module 1: Getting Started With Web Development [3hrs] .. 63

Module 2: HTML and Jinja Templating for Web Application [3hrs] ... 73

Module 3: Web Application Page Styling using CSS [3hrs] ... 80

Module 4: Web Application JavaScript and jQuery / Ajax [3hrs] .. 85

Topic 5: Mobile Apps Development for IoT ... 98

Module 1: Getting Started with MIT App Inventor [2hrs] .. 99

Module 2: Setting Up Connection for MIT App Inventor [1hr] ... 107

Module 3: Building Your First App using MIT App Inventor [3hrs] ... 118

Module 4: Developing Internet of Things App using MIT App Inventor [3hrs] 137

Module 5: Data Visualization using MIT App Inventor [3hrs] ... 167

CSM3313 - Internet of Things | Lab Module

1

Topic 1: Programming
Languages for IoT

CSM3313 - Internet of Things | Lab Module

2

Module 1: Getting Started with Python [1hr]

Objective: In this lab we are going to install software used for python programming. WinPython is a

free open-source portable distribution of the Python programming language for Windows 8/10 and

scientific and educational usage. Project Jupyter exists to develop open-source software, open-

standards, and services for interactive computing across dozens of programming languages.

[Step#01] Install WinPython

1. Search “WinPython download” in your browser

https://sourceforge.net/projects/winpython/

2. Click at downloads, and it will starts shortly

https://www.python.org/
https://sourceforge.net/projects/winpython/

CSM3313 - Internet of Things | Lab Module

3

3. Extract the downloaded file

4. Application inside the folder

[Step#02] Use Jupyter Notebook

1. Open WinPython folder

CSM3313 - Internet of Things | Lab Module

4

2. Start Jupyter notebook

3. Open web browser and

open URL localhost:8888/tree

4. Create new python 3

5. Change the title and

start code

References:

1. https://github.com/winpython

2. https://jupyter.org/

https://github.com/winpython
https://jupyter.org/

CSM3313 - Internet of Things | Lab Module

5

Module 2: Python Basic Programming [2hrs]

Objective: In this lab we are going to code using Jupyter Notebook. Throughout this lab, we will cover

python syntax, element, comment, variable, data types and basic operators.

[Step#01] First code with Python

1. Start Jupyter Notebook.

2. Create a new python 3 file.

3. Change the title to “Python Basic Programming” and start code.

4. Write our first code to familiarise with the python syntax and jupyter notebook. Press “Enter” to

see the result.

CSM3313 - Internet of Things | Lab Module

6

5. The code below shows the importance of indentation in python.

6. The code below using # for comment

[Step#02] Variables in Python

1. The code below creates a variable in python.

CSM3313 - Internet of Things | Lab Module

7

CSM3313 - Internet of Things | Lab Module

8

2. Variables created outside of a function are called global variables. We may use the Global

Keyword to create a global variable within a function.

CSM3313 - Internet of Things | Lab Module

9

3. The code below is to assign variables to a particular data type.

CSM3313 - Internet of Things | Lab Module

10

[Step#03] Input and Output in Python

1. The code below is to use Input and Output in python.

CSM3313 - Internet of Things | Lab Module

11

2. To allow flexibility we might want to take the input from the user. In Python, we have the

input() function to allow this. It is save in string data type. Use a cast to take numeric data.

CSM3313 - Internet of Things | Lab Module

12

[Step#04] Operators in Python

3. Arithmetic

4. Comparison

5. Logical

CSM3313 - Internet of Things | Lab Module

13

6. Bitwise

CSM3313 - Internet of Things | Lab Module

14

Module 3: Python Control Structure [3hrs]

Objective: In this lab we are going to code using Jupyter Notebook. Throughout this lab, we will cover

python control structure.

[Step#01] Create a new file

1. Start Jupyter Notebook.

2. Create a new python 3 file.

3. Change the title to “Python Control Structure” and start code.

[Step#02] Conditions

1. The code below is for decision-making when we only want code to be executed if a certain

requirement is met. The program evaluates the condition and will execute statements if the

condition result is True.

CSM3313 - Internet of Things | Lab Module

15

[Step#02] Iterations

1. The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable

objects. Here, val is the variable that takes the value of the item inside the sequence on each

iteration. Loop continues until we reach the last item in the sequence.

2. The while loop in Python is used to iterate over a block of code as long as the test expression

(condition) is True. We generally use this loop when we don't know beforehand, the number of

times to iterate.

CSM3313 - Internet of Things | Lab Module

16

[Step#03] Functions

1. In Python, function is a collection of associated statements that perform a specific task.

Functions help break into smaller and more flexible parts of our program. As our system grows

bigger and bigger, it's more structured and manageable by functions. It also prevents

repetition, and makes code reusable.

Exercise

a. Create a function to determine fever

b. When the function is called

i. Ask to enter body temperature

ii. Answer whether or not you have a fever

➔ 38 and above - fever

➔ Below than 38 - healthy

The result should be as below :

References:

1. https://github.com/winpython

2. https://jupyter.org/

3. https://www.w3schools.com/python/default.asp

https://github.com/winpython
https://jupyter.org/
https://www.w3schools.com/python/default.asp

CSM3313 - Internet of Things | Lab Module

17

Topic 2: Architecture and IoT
Network Protocol

CSM3313 - Internet of Things | Lab Module

18

Module 1: IoT IT Infrastructure [2hrs]

Objective: In this lab will guide you through understanding functions of some important IT

Infrastructure and services to support IoT Application.

[Step#01] Structured cabling project for a medium size factory.

Estimated new building dimensions that require structured cabling to be designed and installed.

Table: IT Services Requirements by Building Locations

No Location Requirements Qty

1 Administration - Gnd Floor Work Area
Access Point

150
6

2 Administration - 1st Floor Work Area
Access Point

40
2

3 Administration - 2nd Floor Work Area
Access Point

20
2

4 Administration - 3rd Floor Work Area
Access Point

20
2

5 Administration - 4th Floor Work Area
Access Point

20
2

6 Administration - Data Center Rackmount servers
Core Switches
Access Switches

4
2
5

CSM3313 - Internet of Things | Lab Module

19

Internet Routers
UPS
CCTV Controller

1
4
1

7 Production Floor Data outlet
Access Point

300
15

8 Gudang Data outlet
Access Point

40
4

Overall Wireless Requirements:

1. Bring Your Own Devices (BYOD) 800

2. Notebooks 200

3. Wireless IoT Devices 500

Below is the intended location for equipment racks and the data raceways for the entire building.

CSM3313 - Internet of Things | Lab Module

20

With the above information please calculate the bill of material of the components needed to

complete the structure cabling.

Figure: Medium Size LAN Logical Diagram for A Factory

[Step#02] Calculate the IPv4 addresses to be used in DHCP scopes

for all the subnets shown.

1. Network Number

2. Starting IP address

3. Ending IP address

4. Subnet Mask

5. Gateway IP address

Note:

• Please use Class B for IoT subnet

• Please use Class A for all office and Production subnets

• Please use Class C for Visitors subnet

CSM3313 - Internet of Things | Lab Module

21

[Step#03] Deploying NodeRED IoT Gateway using Docker Container.

1. Create a directory to place docker-compose.yml and setting.js files.

2. Use the following docker-compose.yml.

version: '3.1'
services:
 nodered:
 image: nodered/node-red-docker
 container_name: noderedsecure
 volumes:
 - "./settings.js:/usr/src/node-red/node_modules/node-red/settings.js"
 ports:
 - "1880:1880"
 - "1883:1883"

3. Create “settings.js” file in the directory and enter the following content and save the file. This

setting file will make your node-red application secured by enabling admin password: node admin

password is “adminpwd”

 * Copyright JS Foundation and other contributors, http://js.foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 **/

// The `https` setting requires the `fs` module. Uncomment the following
// to make it available:
//var fs = require("fs");

module.exports = {
 // the tcp port that the Node-RED web server is listening on
 uiPort: process.env.PORT || 1880,

 // By default, the Node-RED UI accepts connections on all IPv4 interfaces.

CSM3313 - Internet of Things | Lab Module

22

 // To listen on all IPv6 addresses, set uiHost to "::",
 // The following property can be used to listen on a specific interface. For
 // example, the following would only allow connections from the local machine.
 //uiHost: "127.0.0.1",

 // Retry time in milliseconds for MQTT connections
 mqttReconnectTime: 15000,

 // Retry time in milliseconds for Serial port connections
 serialReconnectTime: 15000,

 // Retry time in milliseconds for TCP socket connections
 //socketReconnectTime: 10000,

 // Timeout in milliseconds for TCP server socket connections
 // defaults to no timeout
 //socketTimeout: 120000,

 // Maximum number of messages to wait in queue while attempting to connect to TCP
socket
 // defaults to 1000
 //tcpMsgQueueSize: 2000,

 // Timeout in milliseconds for HTTP request connections
 // defaults to 120 seconds
 //httpRequestTimeout: 120000,

 // The maximum length, in characters, of any message sent to the debug sidebar tab
 debugMaxLength: 1000,

 // The maximum number of messages nodes will buffer internally as part of their
 // operation. This applies across a range of nodes that operate on message sequences.
 // defaults to no limit. A value of 0 also means no limit is applied.
 //nodeMessageBufferMaxLength: 0,

 // To disable the option for using local files for storing keys and certificates in the TLS
configuration
 // node, set this to true
 //tlsConfigDisableLocalFiles: true,

 // Colourise the console output of the debug node
 //debugUseColors: true,

 // The file containing the flows. If not set, it defaults to flows_<hostname>.json
 //flowFile: 'flows.json',

 // To enabled pretty-printing of the flow within the flow file, set the following
 // property to true:
 //flowFilePretty: true,

CSM3313 - Internet of Things | Lab Module

23

 // Securing Node-RED
 // -----------------
 // To password protect the Node-RED editor and admin API, the following
 // property can be used. See http://nodered.org/docs/security.html for details.
 adminAuth: {
 type: "credentials",
 users: [{
 username: "admin",
 password:
"$2a$08$sd0ZuGsa1G6TyC.VTE7SCet5TMSISz0ZW0l/b4AhBudWThNhNS6VK",
 permissions: "*"
 }]
 },

 // Configure the logging output
 logging: {
 // Only console logging is currently supported
 console: {
 // Level of logging to be recorded. Options are:
 // fatal - only those errors which make the application unusable should be
recorded
 // error - record errors which are deemed fatal for a particular request + fatal
errors
 // warn - record problems which are non fatal + errors + fatal errors
 // info - record information about the general running of the application + warn +
error + fatal errors
 // debug - record information which is more verbose than info + info + warn +
error + fatal errors
 // trace - record very detailed logging + debug + info + warn + error + fatal errors
 // off - turn off all logging (doesn't affect metrics or audit)
 level: "info",
 // Whether or not to include metric events in the log output
 metrics: false,
 // Whether or not to include audit events in the log output
 audit: false
 }
 },

 // Customising the editor
 editorTheme: {
 projects: {
 // To enable the Projects feature, set this value to true
 enabled: false
 }
 }
}

CSM3313 - Internet of Things | Lab Module

24

4. Issue command to build and compose docker-nodered:

(base) fuzis@fsvivo:~/dockers/noderedockersecure$ sudo docker-compose up --build
ERROR: The Compose file './docker-compose.yml' is invalid because:
Unsupported config option for services.nodered: 'volume' (did you mean 'volumes'?)
(base) fuzis@fsvivo:~/dockers/noderedockersecure$ sudo docker-compose up --build
Creating network "noderedockersecure_default" with the default driver
Creating noderedsecure ... done
Attaching to noderedsecure
noderedsecure |
noderedsecure | > node-red-docker@1.0.0 start /usr/src/node-red
noderedsecure | > node $NODE_OPTIONS node_modules/node-red/red.js -v $FLOWS "--userDir"
"/data"
noderedsecure |
noderedsecure | 2 Jul 05:45:13 - [info]
noderedsecure |
noderedsecure | Welcome to Node-RED
noderedsecure | ===================
noderedsecure |
noderedsecure | 2 Jul 05:45:13 - [info] Node-RED version: v0.20.8
noderedsecure | 2 Jul 05:45:13 - [info] Node.js version: v8.16.1
noderedsecure | 2 Jul 05:45:13 - [info] Linux 5.3.0-59-generic x64 LE
noderedsecure | 2 Jul 05:45:14 - [info] Loading palette nodes
noderedsecure | 2 Jul 05:45:14 - [warn] rpi-gpio : Raspberry Pi specific node set inactive
noderedsecure | 2 Jul 05:45:14 - [warn] rpi-gpio : Cannot find Pi RPi.GPIO python library
noderedsecure | 2 Jul 05:45:14 - [info] Settings file : /data/settings.js
noderedsecure | 2 Jul 05:45:14 - [info] Context store : 'default' [module=memory]
noderedsecure | 2 Jul 05:45:14 - [info] User directory : /data
noderedsecure | 2 Jul 05:45:14 - [warn] Projects disabled : editorTheme.projects.enabled=false
noderedsecure | 2 Jul 05:45:14 - [info] Flows file : /data/flows.json
noderedsecure | 2 Jul 05:45:14 - [info] Creating new flow file
noderedsecure | 2 Jul 05:45:14 - [warn]
noderedsecure |
noderedsecure | ---
noderedsecure | Your flow credentials file is encrypted using a system-generated key.
noderedsecure |
noderedsecure | If the system-generated key is lost for any reason, your credentials
noderedsecure | file will not be recoverable, you will have to delete it and re-enter
noderedsecure | your credentials.
noderedsecure |
noderedsecure | You should set your own key using the 'credentialSecret' option in
noderedsecure | your settings file. Node-RED will then re-encrypt your credentials
noderedsecure | file using your chosen key the next time you deploy a change.
noderedsecure | ---
noderedsecure |
noderedsecure | 2 Jul 05:45:14 - [info] Server now running at http://127.0.0.1:1880/

CSM3313 - Internet of Things | Lab Module

25

noderedsecure | 2 Jul 05:45:14 - [info] Starting flows
noderedsecure | 2 Jul 05:45:14 - [info] Started flows

5. Open a browser and access to the url given: http://127.0.0.1:1880

6. Once you login, go to the manage palette and Install MQTT broker as follows:

7. Click tab install and go to search box key in “mqtt”

CSM3313 - Internet of Things | Lab Module

26

8. Once installation completed, the Installed MQTT server name MOSCA can be found in the input

TAB as shown below:

Note: MQTT serve port can be accessed from localhost:1883

CSM3313 - Internet of Things | Lab Module

27

[Step#04] Spin up Grafana + InfluxDB using docker image:

1. Use docker image available built by another user from docker-hub. Run the image as follows:

docker pull samuelebistoletti/docker-statsd-influxdb-grafana

docker run --ulimit nofile=66000:66000 \

 -d \

 --name docker-statsd-influxdb-grafana \

 -p 3003:3003 \

 -p 3004:8888 \

 -p 8086:8086 \

 -p 8125:8125/udp \

 samuelebistoletti/docker-statsd-influxdb-grafana:latest

2. Run docker ps to check the status.

3. Now access to Grafana IoT visualization server: http://localhost:3003

4. You should be able to see the Grafana Selcome Screen:

CSM3313 - Internet of Things | Lab Module

28

5. Now, configure the database for Grafana server.

6. Select InfluxDB

7. The database is not available yet on the InfluxDB server. You need to create it first using InfluxDB

admin page. Open URL: http://localhost:3004 using another browser tab:

http://localhost:3004/

CSM3313 - Internet of Things | Lab Module

29

8. No go back to your Grafana configuration page and continue database setup.

9. Save and test the database connection. You should be able to see the green alert bar “Data source

is working”

CSM3313 - Internet of Things | Lab Module

30

[Step#05] Install InfluxDB

1. Now go to your NodeRED admin page and Install InfluxDB from Mage Palette. Create a flow:

2. Configure the database and add the function script to send test data.

jsn = {};
jsn.temperature = 30.44;
tag = {};
tag.iot = "dht22";
msg.payload = [jsn,tag];

return msg;

CSM3313 - Internet of Things | Lab Module

31

3. Now enable MQTT broker by adding another flow on node-red.

4. Click Done and enable Flow. Your PC now is able to receive messages from MQTT Clients like your

ESP32 Iot device. Try send temperature data and see the result in Grafana Server:

CSM3313 - Internet of Things | Lab Module

32

5. Now you can try to send Temperature data using MQTT client by publishing the data to Mosca

server and subscribe back the data using NodeRed MQTT client. The data is then can be written

to InfluxDB. Here is the updated Flow:

6. You need to change the JS script function to process temperature data arrives from MQTT client.

t = parseFloat(msg.payload);
jsn = {};
jsn.temperature = t;
tag = {};
tag.iot = "dht22";
msg.payload = [jsn,tag];

return msg;

7. Now you can use MQBOX Client to send test data.

CSM3313 - Internet of Things | Lab Module

33

Item 6 Using Grafana Visualization server

1. Your test data will be displayed immediately by the Grafana Visualization server.

2. Now your IoT gateway that supports MQTT, InfluxDB and Grafana visualization server is

complete.

CSM3313 - Internet of Things | Lab Module

34

Module 2: Basic IoT Network Design [1hr]

Objective: This lab exercise will guide you to build a basic reliable Local Area Network to Implement

IoT technology. You will have to configure Core Switch, VLAN, DHCP Server and WiFi devices to make

sure they can communicate with each other.

[Step#01] Network Design

1. Study below network design and service required

2. Launch the Cisco packet tracer and build the network as shown in Step1, ensure all the

connections and devices are labelled.

3. Create VLAN Database on Core-SW, assign a unique VLAN Domain Name and VLAN password

4. Create VLANs (ids) and VLAN Name to be assigned to different subnetworks

5. Configure Core-SW and assign IP addresses to the VLAN interfaces. Remember, these interfaces

are to be the gateways to all the corresponding subnetworks.

6. Configure Trunk ports on all connections between switches.

7. Configure all access switches to join the VLAN domain

8. Connect all devices to access switches and set their VLAN port to the correct VLAN id of the

respective subnetwork.

CSM3313 - Internet of Things | Lab Module

35

9. Configure Wireless AP to serve Wi-Fi connection to IoT wireless devices.

10. Configure SSID and pass-phrase

11. Ensure Wireless AP is connected to the correct VLAN or network segment.

12. Configure DHCP and Web Servers.

13. Join the servers LAN port to the correct VLAN

14. Configure DHCP server IP address

15. Configure DHCP scopes to serve IP addresses to all subnetworks.

16. Configure Core-SW to allow DHCP request relay to each subnetwork.

17. Check that devices that use DHCP get the correct IP address

18. Check that the wireless devices are getting the correct IP addresses from DHCP server

19. Test all connections by sending PDU packets between each device. You are good once all PDU

packets get the replies.

[Step#02] Build simple IoT Network

1. Install Cisco packet tracer 6.2 provided into your PC if you haven’t got one.\

2. Make sure all the devices are added and connected as required by the network design.

3. Configure Core-SW and VLANs

4. Core-SW VLAN Database as VLAN Domain server

Coresw#
Coresw#show vtp status
VTP Version : 2
Configuration Revision : 12

CSM3313 - Internet of Things | Lab Module

36

Maximum VLANs supported locally : 1005
Number of existing VLANs : 8
VTP Operating Mode : Server
VTP Domain Name : iot
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
MD5 digest : 0x88 0x2D 0xD7 0xD0 0x0E 0xA5 0x40 0x56
Configuration last modified by 0.0.0.0 at 3-1-93 00:00:00
Local updater ID is 10.10.10.1 on interface Vl10 (lowest numbered VLAN interface
found)

5. Configure Core-SW VLAN interfaces

Coresw(config)#int Vlan 10

Coresw(config-if)#ip address 10.10.10.1 255.255.255.0

CSM3313 - Internet of Things | Lab Module

37

6. Configure trunk ports

7. Configure Access Switches to Join VLAN Domain

8. Configure VTP Database for switches

Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#vtp mode cli
Switch(config)#vtp mode client
Setting device to VTP CLIENT mode.
Switch(config)#vtp doma
Switch(config)#vtp domain iot
Changing VTP domain name from NULL to iot
Switch(config)#vtp pass
Switch(config)#vtp password iotwifi
Setting device VLAN database password to iotwifi

9. Checking VTP Status

SERVERS#show vtp status
VTP Version : 2
Configuration Revision : 12
Maximum VLANs supported locally : 255
Number of existing VLANs : 8
VTP Operating Mode : Client
VTP Domain Name : iot

CSM3313 - Internet of Things | Lab Module

38

VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
MD5 digest : 0x88 0x2D 0xD7 0xD0 0x0E 0xA5 0x40 0x56
Configuration last modified by 0.0.0.0 at 3-1-93 00:00:00

10. Configure Wireless AP

11. Ensure WirelessAP is connected to the correct VLAN.

CSM3313 - Internet of Things | Lab Module

39

12. Configure DHCP Server and Subnet IP address scope

Checking device dhcp request status.

CSM3313 - Internet of Things | Lab Module

40

Successful ping test from Tab1(10.10.10.52) to DHCP Server (10.10.20.10). Please proceed with the

ping test with other devices as well.

CSM3313 - Internet of Things | Lab Module

41

Topic 3: IoT Application
Programming

CSM3313 - Internet of Things | Lab Module

42

Module 1: Getting Started with MicroPython [1hr]

Objective: In this lab we are going to install softwares used for micropython programming.

MicroPython is a full Python compiler and runtime that runs on the bare-metal. You get an interactive

prompt (the REPL) to execute commands immediately, along with the ability to run and import scripts

from the built-in filesystem. uPyCraft is an IDE that works with Windows and Mac and designed with

a simple interface which is convenient to use.

[Step#01] Install uPyCraft

1. To use uPyCraft we need to install python first

2. Go to https://www.python.org/downloads/release/python-382/

3. Scroll down and select executable file suitable for your OS version (64bit or 32bit(x86))

https://www.python.org/downloads/release/python-382/

CSM3313 - Internet of Things | Lab Module

43

4. Install python - check Add Python 3.8 to PATH !!!

5. Download uPyCraft IDE for Windows. Go to this link :

https://randomnerdtutorials.com/uPyCraftWindows

6. Launch uPyCraft IDE

https://randomnerdtutorials.com/uPyCraftWindows

CSM3313 - Internet of Things | Lab Module

44

***If missing mscvr100.dll, install microsoft visual c++ 2010 redistributable package x86 and x64:

• https://www.microsoft.com/en-my/download/details.aspx?id=5555

• https://www.microsoft.com/en-us/download/details.aspx?id=14632

[Step#02] Flash MicroPython Firmware into ESP32/ESP8266

1. We’ll be using this software to flash our ESP based boards with MicroPython firmware as well as

to program the boards.

2. Download the latest version of MicroPython firmware for the ESP32. Go to

https://micropython.org/download/#esp32.

https://www.microsoft.com/en-my/download/details.aspx?id=5555
https://www.microsoft.com/en-us/download/details.aspx?id=14632
https://micropython.org/download/#esp32

CSM3313 - Internet of Things | Lab Module

45

3. Go to Tools > Serial and select your ESP32 COM port (in our case it’s COM5).

Important: if you plug your ESP32 board to your computer, but you can’t find the ESP32 Port

available in your uPyCraft IDE, it might be one of these two problems: USB drivers missing or

USB cable without data wires.

If you don’t see your ESP’s COM port available, this often means you don’t have the USB

drivers installed. Take a closer look at the chip next to the voltage regulator on board and

check its name.

4. The ESP32 DEVKIT V1 DOIT board uses the CP2102 chip. download the CP2102 drivers on the

Silicon Labs website.

CSM3313 - Internet of Things | Lab Module

46

5. Go to Tools > Board. To select the correct board which ours is esp32.

6. Finally, go to Tools > BurnFirmware menu to flash your ESP32 with MicroPython.

Select all these options to flash the ESP32 board:

➔ board: esp32

➔ burn_addr: 0x1000

➔ erase_flash: yes

➔ com: COMX (in our case it’s COM5)

➔ Firmware: Select “Users” and choose the ESP32 .bin file downloaded earlier

CSM3313 - Internet of Things | Lab Module

47

After pressing the “Choose” button, navigate to your Downloads folder and select the ESP32

.bin file:

Having all the settings selected, hold-down the “BOOT/FLASH” button in your ESP32 board:

While holding down the “BOOT/FLASH“, click the “ok” button in the burn firmware window:

When the “EraseFlash” process begins, you can release the “BOOT/FLASH” button. After a few

seconds, the firmware will be flashed into your ESP32 board.

CSM3313 - Internet of Things | Lab Module

48

Note: if the “EraseFlash” bar doesn’t move and you see an error message saying “erase false.“,

it means that your ESP32 wasn’t in flashing mode. You need to repeat all the steps described

earlier and hold the “BOOT/FLASH” button again to ensure that your ESP32 goes into flashing

mode.

References:

1. https://randomnerdtutorials.com/flash-upload-micropython-firmware-esp32-esp8266/

https://randomnerdtutorials.com/flash-upload-micropython-firmware-esp32-esp8266/

CSM3313 - Internet of Things | Lab Module

49

Module 2: Basic MicroPython Programming [2hrs]

Objective: In this lab we are going to code using uPyCraft IDE. Throughout this lab, we will cover

micropython syntax, element, comment, variable, data types and basic operators.

[Step#01] uPyCraft Familiarisation

1. Let’s execute an embedded program in a microcontroller, we start by using python REPL (read,

evaluate, print loop).In the Shell, try several operations to see how it works.

2. After having the MicroPython firmware installed on your board and having the board connected

to your computer through an USB cable, follow the next steps:

i. Go to Tools > Board and select the board you’re using.

ii. Go to Tools > Port and select the com port your ESP is connected to.

iii. Press the Connect button to establish a serial communication with your board.

iv. The >>> should appear in the Shell window after a successful connection with your

board. You can type the print command to test if it’s working:

CSM3313 - Internet of Things | Lab Module

50

CSM3313 - Internet of Things | Lab Module

51

For this exercise, press Shift+Enter to execute.

3. Creating the main.py file on your board.

I. Press the “New file” button to create a new file.

II. Press the “Save file” button to save the file in your computer.

III. A new window opens, name your file main.py and save it in your computer.

IV. After that, you should see the following in your uPyCraft IDE (the boot.py file in your

device and a new tab with the main.py file)

V. Click the “Download and run” button to upload the file to your ESP board.

CSM3313 - Internet of Things | Lab Module

52

VI. The device directory should now load the main.py file. Your ESP has the file main.py

stored.

4. Uploading the blink LED script.

I. Code to the Editor on the main.py file.

II. Press the “Stop” button to stop any script from running in your board.

III. Click the “Download and Run button” to upload the script to the ESP32 or ESP8266.

IV. You should see a message saying “download ok” in the Shell window.

5. Testing the script

I. Press the “Stop” button

CSM3313 - Internet of Things | Lab Module

53

II. Press the on-board ESP32/ESP8266 EN (ENABLE) or RST (RESET) button to restart

your board and run the script from the start:

III. If you’re using an ESP32, your Terminal messages should look something as shown in

the following figure after a EN/RST button press:

6. print() and sleep()

CSM3313 - Internet of Things | Lab Module

54

References:

1. https://randomnerdtutorials.com/flash-upload-micropython-firmware-esp32-esp8266/

https://randomnerdtutorials.com/flash-upload-micropython-firmware-esp32-esp8266/

CSM3313 - Internet of Things | Lab Module

55

Module 3: ESP32 Programming [3hr]

Objective: In this lab we are going to code ESP32 microcontroller using uPyCraft IDE. Throughout this

lab, we will cover ESP32 digital input and output, analog input, DHT sensor and PWM.

[Step#01] ESP32 Digital Output Pin

1. We start with ESP32 digital output.

CSM3313 - Internet of Things | Lab Module

56

2. Prepare all the components needed and build the following circuit:

3. Write the program into uPyCraft IDE, in

the main.py and upload it into ESP32

board.

2. Prepare all the components needed and build the following circuit:

CSM3313 - Internet of Things | Lab Module

57

4. Write the program into uPyCraft

IDE, in the main.py and upload it

into ESP32 board.

[Step#02] ESP32 Digital Input Pin

1. We continue with ESP32 digital input.

CSM3313 - Internet of Things | Lab Module

58

2. Prepare all the components needed and build the following circuit:

3. Write the program into uPyCraft IDE, in

the main.py and upload it into ESP32

board.

4. Prepare all the components needed and build the following circuit:

5. Write the program into uPyCraft IDE, in

the main.py and upload it into ESP32

board.

CSM3313 - Internet of Things | Lab Module

59

[Step#03] ESP32 - DHT sensor

1. We continue with DHT Sensor.

2. Prepare all the components needed.

3. Write the program into uPyCraft

IDE, in the main.py and download it

into ESP32 board.

CSM3313 - Internet of Things | Lab Module

60

[Step#04] ESP32 Analog Input

1. We start with ESP32 analog input.

2. Prepare all the components needed and build the following circuit:

3. Write the program into uPyCraft IDE,

in the main.py and upload it into

ESP32 board.

CSM3313 - Internet of Things | Lab Module

61

[Step#05] ESP32 PWM

1. We continue with ESP32 PWM.

2. Prepare all the components needed and build the following circuit:

3. Write the program into uPyCraft IDE, in the main.py and upload it into ESP32 board.

CSM3313 - Internet of Things | Lab Module

62

Topic 4: Web Apps
Development for IoT

CSM3313 - Internet of Things | Lab Module

63

Module 1: Getting Started With Web

Development [3hrs]

Objective: In this lab we are going to create a virtual environment. So we will install the flask

package inside this virtual environment. As we do not install into our main python system,

so every project is not going to be affected with the packages updates etc.

[Step#01] Creating virtual project environment

1. Create a new folder to save all our virtual project.

2. Create virtual environment, activate it and install flask inside

CSM3313 - Internet of Things | Lab Module

64

3. Code our first web app and saves as app.py, type all files inside project3 folder.

4. Export and run

* change set project3 = app.py to set FLASK_APP = app.py

CSM3313 - Internet of Things | Lab Module

65

5. Go to http://127.0.0.1:5000/ in your browser

6. To run in debug mode, append this code. In debug mode you don't need to stop if you change

your code. Save your new codes and refresh the page only.

7. Run your code - python app.py

http://127.0.0.1:5000/

CSM3313 - Internet of Things | Lab Module

66

8. We want to create page with a route

9. Route home + no route

CSM3313 - Internet of Things | Lab Module

67

[Step#02] Using template

1. Create new folder and name it “templates”

2. Create new html file and save in templates folder

3. Press "Ctrl-shift-P" and type HTML. Select "HTML: Encode Special Characters".

CSM3313 - Internet of Things | Lab Module

68

4. Code in html language

5. Import render_template

CSM3313 - Internet of Things | Lab Module

69

6. Pass in keyword arguments to the template, like in the example with my_string. Render value to

the template

7. Take the value from flask app

Reference:

• https://realpython.com/primer-on-jinja-templating/

• https://jinja.palletsprojects.com/en/2.11.x/templates/#template-inheritance

https://realpython.com/primer-on-jinja-templating/
https://jinja.palletsprojects.com/en/2.11.x/templates/#template-inheritance

CSM3313 - Internet of Things | Lab Module

70

CSM3313 - Internet of Things | Lab Module

71

CSM3313 - Internet of Things | Lab Module

72

Create a for loop:

The output would be:

References:

1. https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask

https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask

CSM3313 - Internet of Things | Lab Module

73

Module 2: HTML and Jinja Templating for Web

Application [3hrs]

Objective:

In this lab we will learn how to create web pages that give structure and layout to your web application

using HTML codes and JINJA templating.

[Step#01] Create a HTML page

1. Create a directory in your project directory to place the HTML template files.

hint: templates file must be placed in “/static/templates”

2. Create the base template file and give it a name as “base.html”.

hint: base.html must be a valid standard html file with minimum html, head and body

tags.

3. Write HTML code to structure your base.html

a. Define header block

b. Define content block

c. Define footer block

4. Write HTML code for index.html

a. write HTML Jinja code to inherit main.html

hint: use “extend” to inherit main.html into your index.html

b. Write HTML Jinja code to display content for index.html

c. Write an html code to welcome visitors to your web page.

d. Edit flask @app.route for “/” to return the template as response.

hint: return render_template(“index.html”)

e. Re-launch flask app and use an internet browser to access to index.html, i.e. point the

browser the the web application root end-point “/”

f. Try to change the content of your index.html, and notice the changes.

5. Create another html file in the template directory and name it “dashboard.html”

a. Copy index.html and rename it to “dashboard.html”.

CSM3313 - Internet of Things | Lab Module

74

b. Use Jinja code to dynamically parse data to the web application to be rendered in your

dashboard.html

hint: use double curly brackets “{{}}” as a placeholder to display data in your

Jinja block content.

hint: create a flask route to accept dynamic queries from the user and use the

value received via client request to be re-assigned to a variable to be used with

the “render_template” function.

c. Change variable values in your flask code and pass it as a parameter for the

“render_template” function along with “dashboard.html”.

d. Reload the web app and notice the changes.

[Step#02] Create a Flask Project

1. Create a directory structure to place your flask project and it should follow below tree

structure:

2. Name you project directory as you like (example “/flaskwebapp”) and create the “templates”

directory as shown in directory tree structure below:

3. Create the base.html in the templates directory:

CSM3313 - Internet of Things | Lab Module

75

4. Now edit “base.html” with your preferred text editor or an IDE software, and enter the

following content:

<!DOCTYPE html>
<html>

<head>
 <title>Flask Template Example</title>
</head>

<body>
 {% block header %}
 <h1>Flask Template Example</h1>
 {% endblock %}

 {% block content %}
 {% endblock %}

</body>

</html>

5. Test you base template by editing you app.py flask application:

from flask import Flask, render_template
app = Flask(__name__)

@app.route('/')
def myapp():
 return render_template("base.html")

if __name__ == '__main__':
 app.run(host='0.0.0.0', debug=True)

*Note that you must import render_template function from the flask module.

6. Run your flask application:

iot@iotserver:~/flaskwebapp$ python3 app.py
 * Serving Flask app "app" (lazy loading)
 * Environment: production
 WARNING: This is a development server. Do not use it in a production deployment.
 Use a production WSGI server instead.

CSM3313 - Internet of Things | Lab Module

76

 * Debug mode: on
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 252-203-194

7. Create a new html file called “index.html”

iot@iotserver:~/flaskwebapp/static$ touch index.html

8. Edit the file using your preferred text editor or IDE. “index.html” content:

{% extends "base.html" %}

 {% block header %}
 <h1>Welcome to My Flask Main Page !</h1>
 {% endblock %}

 {% block content %}

 <h1>Hello {{visitor}} !</h1>
 {% endblock %}

* Notice the directive {% extends “base.html” %}, this will cause the jinja template engine to inherit

“base.html” code and combine it within your index.html code.

* Notice the place holder “{{visitor}}”, this will tell jinja to render any value that the variable visitor

contains into the page at the <h1> tag location.

9. Edit your flask application code “app.py”:

from flask import Flask, render_template
app = Flask(__name__)

@app.route('/')
def myapp():
 return render_template("index.html")

CSM3313 - Internet of Things | Lab Module

77

@app.route('/hello/<visitor>')
def hello(visitor):
 return render_template("index.html", visitor=visitor)

if __name__ == '__main__':
 app.run(host='0.0.0.0', debug=True)

* Notice that the new endpoint “/hello” is added to flask application code and the endpoint can accept

additional input query from the user and parsed the value to variable “visitor” to be used by python

and jinja template engine.

10. Save the file, flask will automatically reload the code.

11. Open your internet browser and point to the new endpoint “/hello/<put your name here>”

* Notice the changes on the page.

* The page is now showing your “index.html” which contains the greeting “Hello {{visitor}} !”, along

with it is the original greeting “Welcome to My Main Page !” which is coded in the “main.html”.

* This shows that your jinja template engine has combined the main.html and index.html into one page

and response to the request.

* Notice also, the new endpoint can accept another input in the form of query parameters by extending

the endpoint /hello with parameter input “/yourname”.

The input is rendered after the word “Hello” in your index.html.

12. Create a Dashboard page. In the templates directory copy your index.html then paste and

rename it to “dashboard.html”

iot@iotserver:~/flaskwebapp/templates$ cp index.html dashboard.html
iot@iotserver:~/flaskwebapp/templates$ ls
base.html dashboard.html index.html

CSM3313 - Internet of Things | Lab Module

78

13. Then edit the dashboard.html with your preferred text editor or IDE.

{% extends "base.html" %}

 {% block header %}
 <h1>Welcome To IoT Restaurant !</h1>
 {% endblock %}

 {% block content %}

 <div>
 <h2>Restaurant Table Layout will be done here ! <h2>
 </div>
 {% endblock %}

14. Create another endpoint to access the dashboard.html via the internet browser. Add the code

snippet below to your flask application code.

@app.route('/dashboard')
def dashboard():
 return render_template("dashboard.html")

* You should get a result similar to the picture below.

CSM3313 - Internet of Things | Lab Module

79

That’s it… you have learnt from this lab the jinja templating engine…! To make your page look more

modern and familiar to users, you need to use “CSS” codes so that the page will be laid out correctly

and responsively to various screen sizes.

CSM3313 - Internet of Things | Lab Module

80

Module 3: Web Application Page Styling using

CSS [3hrs]

Objective: In this lab we are going to develop a dashboard for restaurant table management. CSS

code must be used to style the html page in order to achieve the proper page layout that can represent

a typical restaurant table layout.

Requirements:

1. Html coding knowledge.

2. Complete Lab 1

3. Complete Lab 2

Use Case:

The Customer needs to display table layout on a web application dashboard that represents

their restaurant table layout. The screenshot shown below is the expected appearance of the

dashboard.

[Step#01] Integrating Bootstrap

1. Copy or include Bootstrap codes into the web application, recommended in “base.html”, so

that each page will load it automatically.

2. Create a html file to represent the table layout page, example “tables.html”.

3. Structure the page content using the jinja templating engine.

CSM3313 - Internet of Things | Lab Module

81

4. Build page using html div elements to represent rows and columns.

5. Assign each DIV element with ID.

6. Add html element to display each table id in the corresponding table div element.
7. Use CSS styling available in Bootstrap to create responsive column layout. Make it 3 columns.
8. Go to Bostraps webpage and download the latest library.

9. Extract the file and copy the content to your static directory

CSM3313 - Internet of Things | Lab Module

82

10. Modify base.html to include the CSS and JS files that come with the Bootstrap library.

[ref:jinja template inheritance]

base.html:

<!DOCTYPE html>
<html>

<head>
 <title>Flask Template Example</title>
 <link href="{{ url_for('static', filename='css/bootstrap.min.css') }}" rel="stylesheet">
 <link href="{{ url_for('static', filename='css/main.css') }}" rel="stylesheet">
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
</head>

<body>
 {% block header %}
 <h1>Flask Template Example</h1>
 {% endblock %}

 {% block content %}
 {% endblock %}

</body>

</html>

11. To test your Bootstrap setup is correct, modify your “dashboard.html” file to use one of the

available classes, such as “jumbotron”.

{% extends "base.html" %}

 {% block header %}
 <h1>Welcome To IoT Restaurant !</h1>
 {% endblock %}

 {% block content %}

 <div class="jumbotron">
 <h2>Restaurant Table Layout will be done here ! <h2>
 </div>
 {% endblock %}

https://svn.python.org/projects/external/Jinja-1.1/docs/build/inheritance.html

CSM3313 - Internet of Things | Lab Module

83

12. Save the file and see the difference:

[Step#02] Implementing CSS Styling

Create another html file in the templates directory and name it “tables.html”.

We can make use of the class available in the bootstrap library called “grid system”.

The class ability to build tables like layout which control the size and layout of html “DIV” elements.

It consists of class “row” and “column”

In the restaurant table layout we need 2 rows and in each row there will be 3 columns.

Entire row can accommodate 12 columns with 1 unit width.

So if we want to create only 3 columns in a row, we need to span each column by 4 unit widths to

occupy all 12 unit widths across a row.

So we need to use two classes:

1. row

2. col-sm-4

Step 3:

Structure “tables.html” by inheriting from “dashboard.html” and layout html code to use bootstrap

grid system.

Step 4, 5, 6, 7:

CSM3313 - Internet of Things | Lab Module

84

Enter the following codes and save the file.

{% extends "dashboard.html" %}
{% block content %}

 <div class="container">

 <div class="row">
 <div class="col-sm-4" id="TA"><h2>Table A</h2></div>
 <div class="col-sm-4" id="TB"><h2>Table B</h2></div>
 <div class="col-sm-4" id="TC"><h2>Table C</h2></div>
 </div>

 <div class="row">
 <div class="col-sm-4" id="TD"><h2>Table D</h2></div>
 <div class="col-sm-4" id="TE"><h2>Table E</h2></div>
 <div class="col-sm-4"id="Info">

<h2>Information</h2>
</div>

 </div>
 </div>
{% endblock %}

Update app.py to add the endpoint for table.html

@app.route('/tables')
def tables():
 return render_template("tables.html")

Save app.py and check the page by using your internet browser.

CSM3313 - Internet of Things | Lab Module

85

Module 4: Web Application JavaScript and

jQuery / Ajax [3hrs]

Objective: In this lab we are going to develop a dashboard for restaurant table management.

Use Case:

You are given a requirement for a restaurant to develop an ordering system using an electronic menu

for its customer. At the dining table, customers will find an electronic menu controlled by a

microcontroller with a menu linked to its touchpads.

Your job is to develop an embedded application such that, whenever a customer touches the selected

touchpad designated with a menu set, the microcontroller automatically places the order onto the

restaurant dashboard. The customer can make repeated orders by touching different touchpads

designated with other sets of menus, or repeatedly touches the same touchpad to make multiple

orders.

The microcontroller relies on Wi-Fi connection available in the restaurants to connect to the

dashboard server that manages the order. Cooks in the kitchen will use the information to cook the

meals based on the orders displayed on the dashboard.

The dashboard developer has given the endpoints details and methods to use in order for the IoT to

be able to send data successfully to the back-end system. It used REST technology to accomplish this

data communication process.

CSM3313 - Internet of Things | Lab Module

86

[Step#01] Connecting to Wi-Fi

1. The below endpoint format that we will use to access the restaurant web application API.

http://<servername_ip>:8000/status/<table_ID>

2. Here is the list of REST Endpoints.

No End Point (URI) methods Data (JSON)

1 http://<servername_ip>:8000/table/<table
_ID>

POST data:
{“food”:[“name food of menu”],
“Drinks”:[“name of drink”]
}

Successful Response:
{ "Status": "idle", "drinks": ["hot chocolate with
cream"], "food": ["lamb chop in black-pepper
sauce"], "status": "Booked by WSkill", "table":
"C", "time": "Sun Mar 8 07:10:25 2020" }

2 http://<servername_ip>:8000/status/<table
_ID>

POST Data:
{"status":"BOOKED by WSkills"
}
Successful response:

CSM3313 - Internet of Things | Lab Module

87

Updated: table C, BOOKED by WSkills

3 http://<servername_ip>:8000/mainpage GET Successful response:
Table layout HTML page

4 http://<servername_ip>:8000/tables GET Successful response:
JSON data:{
 "A": {
 "drinks": [
 "iced pepsi"
],
 "food": [
 "beef burger and cheese"
],
 "status": "Serving",
 "table": "A",
 "time": "Sun Mar 8 07:04:47 2020"
 },
 "B": {
 "drinks": [
 "hot coffee with cream"...}

5 http://<servername_ip>:8000/menu GET application/JSON response with menu database.
{
 "dnr-1": {
 "drinks": "Iced Fresh Pineapple Juice",
 "food": "Grilled Lamb Chop in Black Pepper
Sauce with Baked Potato Salad",
 "price": 22.5
 },
 "dnr-2": {
 "drinks": "Iced Kasturi Lime Juice with Asam
Boi",
 "food": "Spicy Fried Rice with Grilled Beef in
Percik Sauce ",
 "price": 19.5
 }, …… }

3. Now let's start by programming the microcontroller to connect to WiFi and perform some

http requests from the dashboard server by using urequest.py library.

4. Connect your microcontroller to the USB port and allow it to boot properly.

CSM3313 - Internet of Things | Lab Module

88

5. Make sure the uPyCraft IDE is connecting to the correct com port. In this case COM7

6. Click on the device, list of older programs may exist…

7. Create a new python file and give it a name wlconnect.py.

8. Ensure that you have the necessary libraries copied to the device directory as well…

9. In this case we need “urequests.py”.
10. Now start editing the “wlconnect.py”

CSM3313 - Internet of Things | Lab Module

89

Let test a HTTP requests to a sample web application server

import os
import network
import urequests
wl = "wlanc47a5"
wlpw = "c000047a00005"
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(wl,wlpw)
while not wlan.isconnected:
 pass
print(wlan.ifconfig())

websvr = "http://192.168.1.23:8000"

rsps = urequests.get(websvr)
print(rsps.content)

11. Congratulations ! You have successfully programmed an embedded application using an IoT

device.

CSM3313 - Internet of Things | Lab Module

90

[Step#02] Implementing REST API

1. Now let us test the REST endpoint related to restaurant application….

2. Let's try to access the data from the server using HTTP / GET requests from one of the end-

points. Use this endpoint: “http://<servername_ip>:8000/tables”

>>> uri = websvr + "tables"
>>> uri
'http://192.168.1.23:8000tables'
>>> uri = websvr + "/tables"
>>> uri
'http://192.168.1.23:8000/tables'
>>> rsps = urequests.get(uri)
>>> print(rsps.content)
b'{\n "A": {\n "drinks": [\n "iced pepsi"\n], \n "food": [\n "beef burger and cheese"\n], \n
"status": "Serving", \n "table": "A", \n "time": "Sun Mar 8 07:04:47 2020"\n }, \n "B": {\n "drinks": [\n
"hot coffee with cream"\n], \n "food": [\n "lamb chop in barbeque sauce"\n], \n "status":
"Serving", \n "table": "B", \n "time": "Sun Mar 8 07:06:49 2020"\n }, \n "C": {\n "Status": "idle", \n
"drinks": [\n "hot chocolate with cream"\n], \n "food": [\n "lamb chop in black-pepper sauce"\n
], \n "status": "BOOKED by WSkills", \n "table": "C", \n "time": "Sun Mar 8 14:17:37 2020"\n }, \n "D":
{\n "drinks": [\n "hot chocolate with cream", \n "iced pepsi"\n], \n "food": [\n "lamb chop in
black-pepper sauce", \n "beef burger and cheese"\n], \n "status": "Complete", \n "table": "D", \n
"time": "Sun Mar 8 07:08:39 2020"\n }, \n "E": {\n "drinks": [\n "iced pepsi"\n], \n "food": [\n
"beef burger and cheese"\n], \n "status": "BOOKED by WSkills", \n "table": "E", \n "time": "Sun Mar
8 05:52:10 2020"\n }, \n "information": ""\n}\n'
>>>

3. From the example above, we use micropython to build the endpoint based on its existing

variable values in memory…

uri = websvr + "tables"
Here uri will be our endpoint variable, we concatenate the value server address in variable
websvr and test the value:

http://192.168.1.23:8000tables

This URI value seems to be correct, but there is a slight mistake. It is missing one “/” before
the parameter “tables”

It is easily fixed in the code follows :

 uri = websvr + "/tables"

The code below re-execute REST request to the server:
 rsps = urequests.get(uri)

4. After execution, REPL prompted with no error, this means that the REST request has been

successful.

http://192.168.1.23:8000tables

CSM3313 - Internet of Things | Lab Module

91

The “rsps” variable is the variable corresponding to the request object, now it holds the

data being sent by the server response.

print(rsps.content)

This command prints the content or data available in rsps object as shown below:

b'{\n "A": {\n "drinks": [\n "iced pepsi"\n], \n "food": [\n "beef burger and cheese"\n], \n
"status": "Serving", \n "table": "A", \n "time": "Sun Mar 8 07:04:47 2020"\n }, \n "B": {\n "drinks": [\n
"hot coffee with cream"\n], \n "food": [\n "lamb chop in barbeque sauce"\n], \n "status":
"Serving", \n "table": "B", \n "time": "Sun Mar 8 07:06:49 2020"\n }, \n "C": {\n "Status": "idle", \n
"drinks": [\n "hot chocolate with cream"\n], ...
>>>

5. The data is a large string object that can be processed as a JSON object.

Now let's try to post some data according to REST API endpoint and data structure format.

Let say, the customer wants to order as set for:

Food: “Fish and Chips with Salads”
Drink: “hot coffee latte”

The the JSON data format show look like as follows:

{
"food":["fish and chips with salads"],
"drinks":["hot coffee latte"]
}

6. Now we need to create a python object to hold this data.

menu = {"food":["fish and chips with salads"],
"drinks":["hot coffee latte"]}

7. To achieve this we can use python built in function “dict”, the function that builds a

dictionary object which has a similar structure as JSON data.

CSM3313 - Internet of Things | Lab Module

92

8. It looks like “food” and “drinks” switch positions, but luckily it doesn’t matter to python.

Now the data is ready to be posted to the server. What we need now is the correct server
address and end-point that will be able to process the data..

Checking the REST end-points of the web application we the end point is:

http://<servername_ip>:8000/table/<table_ID>

9. So let's build the URI for this end-point, and assign it to a variable.
We choose table A, since the Table is available...

10. With the python code shown above , now the “uri” object holds the correct end-point value
that we need.

'http://192.168.1.23:8000/table/A'

11. Next we will post the menu data to the endpoint using micro python “urequests” REST

client library.
Another piece of information is required to inform the web application server that we want
the data to be processed as a JSON application. Or else, it assumes XML/HTML which is
designed for human visualization.

CSM3313 - Internet of Things | Lab Module

93

So the information is fed to header parameter of urequests object like shown below:

headers = {'content-type': 'application/json'}

12. Now the complete instruction to use for micropython will be as follows:

>>> rps = urequests.post(uri, json=menu, headers = headers)

13. Lets run the command.... You should receive confirmation from the web application server
the response like shown in the screenshot below.

14. Response from successful POST requests to end-point for ordering a dinner set of the
restaurant web application. We can now check how it appears on the dashboard.

15. We also need to send another piece of JSON data to set the table status as being served…

The endpoint should be:

http://<servername_ip>:8000/status/<table_ID>

16. Let’s set the status as “Serving now...”

Our JSON data should be:

Data:
{
"status":"Serving now..."

CSM3313 - Internet of Things | Lab Module

94

}

17. So now let's take a look on the dashboard again.

As you can see, the information about the menu being ordered and the status of the table
being served are displayed correctly for human visualization.

18. Congratulations ! Your IoT is capable of using REST data communication protocol to work as
required by the web application API.

19. Finally you need to put these commands or codes into a python function or module so that it
can be called by other python functions such as a function that runs when touchpad is
activated.

Alright… now lets us put all the pieces of code together to perform as one embedded
application in an IoT device.

20. Let’s begin with the menu codes:
You can be creative in this task, just imagine your favorite food…
Here are four suggested menus that water your mouth…!

SET ID Servings Category

snk-1 food: Pineapple Shrimp Sandwich with Cheese and Pepper
drinks: Hot black coffee

Snack - I’m not hungry

CSM3313 - Internet of Things | Lab Module

95

lch-1 food:BBQ Chicken Maryland and Steamed Butter Rice and Curry
Gravy
drinks: Iced lemon tea

Lunch - I’m hungry

dnr-1 food:Grilled Lamb Chop in Black Pepper Sauce with Baked Potato
Salad
drinks:Iced Fresh Pineapple Juice

Dinner - I’m very
hungry

dnr-2 food:Spicy Fried Rice with Grilled Beef in Percik Sauce
drinks:Iced Kasturi Lime Juice with Asam Boi

Dinner - I’m very
hungry

21. We must assume that the developer of the web application will be able to provide us with
this data via its API interface and the way to access to the resources by suing the endpoint:

http://<servername_ip>:8000/menu

We can test the API service from IoT itself…

This is how we do it…

>>> websvr
'http://192.168.1.23:8000'
>>> rps = urequests.get(websvr + "/menu")
>>> rps.content
b'{\n "dnr-1": {\n "drinks": [\n "Iced Fresh Pineapple Juice"\n], \n "food": [\n "Grilled
Lamb Chop in Black Pepper Sauce with Baked Potato Salad"\n], \n "price": 22.5\n }, \n "dnr-
2": {\n "drinks": [\n "Iced Kasturi Lime Juice with Asam Boi"\n], \n "food": [\n "Spicy
Fried Rice with Grilled Beef in Percik Sauce "\n], \n "price": 19.5\n }, \n "lch-1": {\n "drinks":
[\n "Iced lemon tea"\n], \n "food": [\n "BBQ Chicken Maryland and Steamed Butter Rice
and Curry Gravy"\n], \n "price": 17.5\n }, \n "snk-1": {\n "drinks": [\n "Hot black
coffee"\n], \n "food": [\n "Pineapple Shrimp Sandwich with Cheese and Pepper"\n], \n
"price": 9.5\n }\n}\n'
>>> menus=json.loads(rps.content)
>>> menus
{'snk-1': {'drinks': ['Hot black coffee'], 'price': 9.5, 'food': ['Pineapple Shrimp Sandwich with Cheese
and Pepper']}, 'dnr-1': {'drinks': ['Iced Fresh Pineapple Juice'], 'price': 22.5, 'food': ['Grilled Lamb
Chop in Black Pepper Sauce with Baked Potato Salad']}, 'dnr-2': {'drinks': ['Iced Kasturi Lime Juice
with Asam Boi'], 'price': 19.5, 'food': ['Spicy Fried Rice with Grilled Beef in Percik Sauce ']}, 'lch-1':
{'drinks': ['Iced lemon tea'], 'price': 17.5, 'food': ['BBQ Chicken Maryland and Steamed Butter Rice
and Curry Gravy']}}
>>>
>>> menus.keys()
dict_keys(['snk-1', 'dnr-1', 'dnr-2', 'lch-1'])
>>> menus['lch-1']
{'drinks': ['Iced lemon tea'], 'price': 17.5, 'food': ['BBQ Chicken Maryland and Steamed Butter Rice
and Curry Gravy']}

CSM3313 - Internet of Things | Lab Module

96

22. Now we can see that we can access each menu information available on the web application
server via REST API using an IoT microcontroller. This means that this information can be
used to place orders on restaurant applications by using python codes that will respond to
customer input such as a touchpad.

Here is the combined code into one IoT touchpad order application utilizing two touchpad
sensors as inputs…

#This application is for embedded program to utilize touchpad sensors for restaurant ordering system
#author fuzi shariff
#email: fuzishariff@gmail.com

import wlconnect #your separate module to connect to WiFi
import urequests
from machine import TouchPad, Pin
from utime import sleep
led = Pin(15,Pin.OUT)
tch = TouchPad(Pin(4))
tch.config(2000)
tch2 = TouchPad(Pin(13))
tch2.config(2000)
import json

websvr ="http://192.168.1.23:8000"
headers = {"content-type":"application/json"}

def getMenu():
 rps = urequests.get(websvr+"/menu")
 menus = json.loads(rps.content)
 rps.close()
 return(menus)

def orderMenu(tableID, menuKey):
 menus = getMenu()
 rps = urequests.post(websvr + "/table/" + tableID, json=menus[menuKey], headers=headers)
 print(rps.content)
 rps.close()

while True:
 d = tch.read()
 if d < 490:
 led.on()
 print("You touched ESP32 sensor !")
 menulis = getMenu()
 orderMenu("A",'lch-1')
 sleep(1)
 led.off()
 sleep(0.2)

 d = tch2.read()
 if d < 490:
 led.on()
 print("You touched ESP32 sensor !")
 menulis = getMenu()
 orderMenu("B",'dnr-1')
 sleep(1)
 led.off()
 sleep(0.2)

CSM3313 - Internet of Things | Lab Module

97

24. The dashboard application displayed the orders as shown below:

CSM3313 - Internet of Things | Lab Module

98

Topic 5: Mobile Apps
Development for IoT

CSM3313 - Internet of Things | Lab Module

99

Module 1: Getting Started with MIT App Inventor

[2hrs]

Objective: In this lab we are going to walk through the MIT App Inventor and getting

familiar with the layout, menus and panels available at the web application. MIT App

Inventor is a web based application that allows user to create Android apps.

[Step#01] Create Your 1st App

1. Launch your preferred web browser and typed in the following URL to access the MIT

App Inventor https://appinventor.mit.edu/

2. At the homepage, click on the Create Apps! button.

3. Then, you will be redirected to Sign-in to your Google Account. Key-in your email

address and make sure you have the access to your email.

https://appinventor.mit.edu/

CSM3313 - Internet of Things | Lab Module

100

4. After signing-in to your Google Account, you will be redirect to the workspace in building

your Android app. Here, you will be prompt with a pop-up windows asking you whether

you want to setup your android device.

5. There are 3 options available to connect or setup your android device. If you have an

Android device, you can opt for Option One or Option Three. If you don’t have an

your android device.

new window tab to setup
You’ll be redirected to a

For this course, we will

be focusing on Option

One and Option Three.

Both laptop and your

Android device need to

be in the same Wi-Fi

Note:

Please refer to Lab 2 for

setting up your

Android device.

CSM3313 - Internet of Things | Lab Module

101

Android device, you can opt for Option Two which uses an Android Emulator.

6. After you have setup your Android device, you can close the current tab and return back

to the workspace tab as shown in the figure below.

7. Once you’ve clicked on the “Continue”, you will be presented with a welcome pop-up

window. You can start building Android apps based on these tutorials or you can explore

the MIT App Inventor on your own. In this lab, we’re going to create our own project

and familiarize with the layout, menus and panels in MIT App Inventor.

8. Then click on the “Start new project” button and you will be prompt with a pop-up

window to key-in the name of the project.

We’re going to close this

tab and focuses on the

workspace tab.

Click “Continue” button on

the pop-up window to

activate the workspace area.

CSM3313 - Internet of Things | Lab Module

102

Click on “CLOSE”

button to continue

with creating your

own project

Project name: testApps

Click here to start

a new project

CSM3313 - Internet of Things | Lab Module

103

9. Then, you will be redirected to the MIT App Inventor design layout as shown in figure

below. By default, you’ll be presented with the Designer component. There are two

types of component, which are Designer and Block. You can switch between

components by clicking on the button at the top right side.

10. The MIT App Inventor Designer lets you design your apps by using the drag and drop

method. Meanwhile, the MIT App Inventor Blocks lets you code your program by

arranging the blocks of code.

11. There are five (5) windows in the Designer of MIT App Inventor Designer.

a. Palette: holds the components you can use in your program; separated into

sub lists

b. Viewer: shows components mapped out to what the app will look like
c. Components List: lists components in the app

d. Media: Allows developer to upload audio and pictures.

To switch between component,

click on these buttons.

Designer Block

CSM3313 - Internet of Things | Lab Module

104

e. Properties: Showing the selected component.

12. Figure below shows the screen design with a Button, a Sound and a Sensor which is the

Accelerometer. All these components can be find at the palette on the left side of the

MIT App Inventor Designer window.

a c e

b

d

Palette contain components

that usually found on android

pho

ima

Accelerometer Sound

 Button

nes such as button,

ge, textbox, and so on.

CSM3313 - Internet of Things | Lab Module

105

13. Then, to specify how the components works, you can easily code them at the MIT App

Inventor Block window as show in the figure below. The figure shows blocks of code

showing the action of the Button and the Accelerometer sensor on the phone.

14. In the MIT App Inventor Block, there are 6 components that are important for us to

remember which are

a. Built-in blocks

b. Component Blocks

c. Media

d. Viewer

e. Backpack

f. Trash

CSM3313 - Internet of Things | Lab Module

106

References:

1. http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTr

ickHa ndout.pdf

2. https://appinventor.mit.edu/explore/library

3. https://appinventor.mit.edu/explore/ai2/tutorials

4. https://www.programwithappinventor.org/

5. https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
https://appinventor.mit.edu/explore/library
https://appinventor.mit.edu/explore/ai2/tutorials
https://www.programwithappinventor.org/
https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

CSM3313 - Internet of Things | Lab Module

107

Module 2: Setting Up Connection for MIT App

Inventor [1hr]

Objective: In this lab we are going to go through the steps needed in setting up the

connection from the MIT App Inventor 2 to our Android device. There are three (3) options to

setup your connection which are via WiFi, via USB cable, and lastly via an Android Emulator.

For this lab we’re going to focus on connecting using the AI Companion app that you can

download from Google Play Store and connecting it via WiFi and USB cable to the MIT App

Inventor 2.

Figure 1: Connections between MIT App Inventor and your Android Device

[Step#01] Connecting to Phone using USB

1. Go to https://appinventor.mit.edu/explore/ai2/setup-device-usb and scroll until

you see a link to install App Inventor 2 for Windows as shown in figure below.

https://appinventor.mit.edu/explore/ai2/setup-device-usb

CSM3313 - Internet of Things | Lab Module

108

2. Then, click on the hyperlink “Download the installer”. Once you’ve clicked on

the hyperlink, a window will pop-up prompting the location to save the

installer.

 Click here to download.

You can set the location for

the installer to be

downloaded. In this case

I’ve created a folder over at

the Desktop named “MIT

App Inventor”

Click on the button

“Save” to continue

downloading the

installer

CSM3313 - Internet of Things | Lab Module

109

3. Once you have located the installer, right-click on it and “Run as administrator”.

Then, allow it to run.

4. After you have run the installer, a setup window will pop-up as shown in figure

below. Click on the button “Next >” to continue with the installation.

5. Then you’ll be presented with the License Agreement for MIT App Inventor Tools.

Read carefully before agreeing. If you agreed with the agreement, click on the “I

Agree” button to continue with the installation.

Click on the Next >

button to continue

with the installation

Click on the I

Agree button to

continue with the

installation

CSM3313 - Internet of Things | Lab Module

110

6. Next, you need to choose whether to make the application or software accessible

to all users or only for the current user. It is recommended that the software to

be accessible to all users.

7. After that, you can choose the components to be installed. As you can see, by

default the MIT App Inventor Tools have been checked. You are left to choose

either to create a Desktop Icon or not.

Click on the Next >

button to continue

with the installation

It is recommended that

this application be

installed for every user

Click on the Next >

button to continue

with the installation

Checked on the

“Desktop Icon” to

create the Desktop

shortcut.

CSM3313 - Internet of Things | Lab Module

111

8. It is important for you to remember the directory path of the MIT App Inventor Tools.

9. Now, all that is left is for you to do is to install this applications on your laptop or

workstation. You can change the name of the folder for the MIT App Inventor

Tools shortcut if you want but by default the name of the folder is already given

to you.

Click on the Next >

button to continue

with the installation

Take note on the directory path of the

installation. If you’re using a 64-bit

Windows OS, the directory path should

look like this.

Click on the Install

button to continue

with the installation

CSM3313 - Internet of Things | Lab Module

112

10. Sit back, relax and wait until the installation finished. You can monitor the

progress of the installation from the installation window as shown in the figure

below.

11. Lastly, click on the Finish button and the aiStarter tool will start.

Wait until the installation are

complete. You can monitor the

installation here.

Click on the Finish

button to end the

installation

CSM3313 - Internet of Things | Lab Module

113

12. Then, a window will pop-up looking like the figure below. This is the tools to

connect to the MIT App Inventor 2.

* Besides that, make sure that you “Allow USB Debugging” at your phone. As well as

downloading the MIT AI2 Companion app over at the Google Play Store as shown in the figure

below.

ATTENTIO
N!

your

cted

e.

Make sure that

phone is conne

to the USB cabl

ATTENTION!

Also, make sure that

the other end of the

USB cable are

connected to your

laptop.

CSM3313 - Internet of Things | Lab Module

114

13. Next step, go to the MIT App Inventor 2 web application, and click on the second

menu which the Connect menu.

CSM3313 - Internet of Things | Lab Module

115

14. Once the MIT App Inventor 2 managed to connect via USB, another window will

pop- up notifying that it has successfully connect via USB.

CSM3313 - Internet of Things | Lab Module

116

[Step#02] Connecting to Phone via Wi-Fi

1. For this step, please make sure that your phone and your laptop have internet

connection.

2. Go to the MIT App Inventor 2 web application, and click on the second menu

which the Connect menu.

3. Then, at the menu choose “AI Companion”. Then a pop-up window with a code

as well QR Code will appear.

At Connect menu, click on the
dropdown list and the click on the AL
Companion option.

At the MIT App Inventor 2 menu

on top, click on the dropdown list

for the Connect menu.

You can choose to connect to the

MIT AI2 Companion app over at

your using the QR Code or typing in

the code given

CSM3313 - Internet of Things | Lab Module

117

4. Over at your phone, launch your MIT AI2 Companion app, and in this lab we are going to

scan the QR Code generated by the MIT App Inventor 2 web

References:

a. http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/

MagicTrickHa ndout.pdf

b. https://appinventor.mit.edu/explore/library

c. https://appinventor.mit.edu/explore/ai2/tutorials

d. https://www.programwithappinventor.org/

e. https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

Then, tap on the scan

QR code button. Your

camera will open and

you can scan over to the

QR Code generated at

the MIT App Inventor 2

web applications.

Launch the MIT

AI2 Companion

app at your

phone.

http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
https://appinventor.mit.edu/explore/library
https://appinventor.mit.edu/explore/ai2/tutorials
https://www.programwithappinventor.org/
https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

CSM3313 - Internet of Things | Lab Module

118

Module 3: Building Your First App using MIT App

Inventor [3hrs]

Objective: In this lab we are going to go through the steps for building your first app using the MIT

App Inventor. We will go in depth in designing the screen layout and coding the functionality of the

components on the MIT App Inventor Designer.

[Step#01] User Interface

The first group of the component in the palette is the User Interface.

In the User Interface you can see components that are usually visible

on the screen an android phone. In this part of lab, we will utilize two

components from the User Interface which are Button, and Image.

*Note: From this point onwards, this lab guide will continue from

the previous lab guide which is Lab 2: Setting up Connection for MIT

App Inventor 2. Please make sure that you have followed and

completed Lab 1 and Lab 2 step by step guide before starting with

this lab guide.

Once you have open your MIT App Inventor 2, follow the

following steps.

a. Drag and drop the Button components on the Viewer at the

screen of the android phone. Also, make sure that you have

selected the screen to be a phone screen. Unless, you have a

tablet with you then you can set the view to be in tablet

mode.

b. Once you have dropped the button on the screen, we will

need to change the text on the button from Text for Button

1 to Button. This can only be done at the Properties window

on the right side of the window. As mention in Lab 1 guide,

the properties window is responsible in changing the

property of the components on the screen.

You can choose the size

of your display screen

in the drop down list.

There are 3 options

which are Phone size,

Tablet size and

Monitor size.

CSM3313 - Internet of Things | Lab Module

119

c. Take note that, once you have dragged the components on the screen, you can see a tree view

list of the components available on the screen as shown in the figure below. Be sure to select the

components that you wanted to change the property.

d. Change the text appearing on the Button by changing it at the Text Property. As mention

previously, please change it from Text for Button 1 to Button.

a

c

b

CSM3313 - Internet of Things | Lab Module

120

e. The end result should look like figure below.

[Step#02] Sensors

Next, we will be adding a Sensor on our

android app. The sensors component can be

found on the palette as show in figure on the

right. The sensor listed are sensors that are

commonly found on an android phone.

In this lab guide, we will be adding an

AccelerometerSensor on our screen.

We will be implementing a code as show

below which will do an event when the

AccelerometerSensor detects a shaking

motion.

The steps for adding the

AccelerometerSensor are as follows:

a. Select the AccelerometerSensor from the
Sensors component list.

b. Drag it across the screen and drop it on

CSM3313 - Internet of Things | Lab Module

121

the screen.

c. Take note that, the AccelerometerSensor is an invisible component on the android apps.

It will only appear at the bottom part of the viewer.

[Step#03] Media
Then, we will be adding a Sound on our app. The Sound component can be found on the

Palette at the Media group component as shown in figure below.

a

b

CSM3313 - Internet of Things | Lab Module

122

The steps for adding the Sound on the MIT App Inventor 2 are as follows:

a. Select the Sound from the Media component list.

b. Drag it across the screen and drop it on the screen.

c. Take note that, the Sound is an invisible component on the android apps. It will only

appear at the bottom part of the viewer

d. The select the Sound1 from the Component tree view list.
e. Notice that the Source at the Properties of the Sound1 is None.

f. To change this, we need to upload a sound file to the MIT App Inventor 2 server.

The following steps will show you ways to upload a media file onto the MIT App Inventor 2.

a. Go to the Media at the bottom right of the MIT App Inventor and click on the Upload File

button.

b. Then, a prompt for Upload file will appear at the centre of the window. Click on Choose

File button.

c. A window will pop-up. Choose the folder Exercise 1. Double-click to open.
d. Choose the Boing-sound.mp3 file and click Open.
e. You will be returning back to the MIT App Inventor 2 window. Click OK.
f. Take note that, at the Media there is a file titled Boing-sound.mp3 in the list.
g. Lastly, go to the Properties for Source and choose the file Boing-sound.mp3.
h. Click OK to append the file to the Source.

d
e

a

b

f

c

CSM3313 - Internet of Things | Lab Module

123

CSM3313 - Internet of Things | Lab Module

124

CSM3313 - Internet of Things | Lab Module

125

[Step#04] Implementing code in MIT App Inventor

After designing your android screen, we will then proceed with coding the android apps at the MIT

App Inventor Blocks. The following steps will show you ways to code by arranging the block at the

MIT App Inventor 2 Blocks. Make sure that you have open the MIT App Inventor 2 Blocks.

a. Firstly, select the Button1 at the Component Blocks.
b. Then, select code block for the activity when Button1.Click (see figure below).

CSM3313 - Internet of Things | Lab Module

126

c. Drag and drop it on the Viewer.
d. After that, select Sound1 at the Component Blocks.

e. Select the block for call Sound1.Play (see figure below).

CSM3313 - Internet of Things | Lab Module

127

f. Drag and drop it on the Viewer and arrange it under the when Button1.Click block (see figure

below).

g. Then, at the same block (Sound1) select the block call Sound1.Vibrate millisecs (see

figure below).

CSM3313 - Internet of Things | Lab Module

128

h. Arrange the block under the call Sound1.Play block (see figure below).

i. Then, choose the Math block at the Built-in Blocks.
j. Select the number block.

CSM3313 - Internet of Things | Lab Module

129

CSM3313 - Internet of Things | Lab Module

130

k. Append it at the call Sound1.Vibrate millisecs block and change the number to 500.

l. Select the AccelerometerSensor1 at the Component Blocks.
m. Then, choose the block when AccelerometerSensor1.Shaking.

CSM3313 - Internet of Things | Lab Module

131

n. Drag and drop the block at the Viewer. You can place the block anywhere on the Viewer but it is
best to place it under the Button1 block (see figure below).

o. As in previous step, select Sound1 at the Component Blocks.
p. Then, select the block for call Sound1.Play (see figure below).

CSM3313 - Internet of Things | Lab Module

132

q. Arrange the block under the when AccelerometerSensor1.Shaking (see figure below).

r. Lastly, connect your Android Phone via WiFi (AI Companion) or USB and test the app!

CSM3313 - Internet of Things | Lab Module

133

[Step#05] Adding Image to Button

A

a. Make sure that you have selected Button1 at the Components.

b. Then, at the Properties, go to Image. As you can see that the Image is currently

None

c. Click on Upload File

CSM3313 - Internet of Things | Lab Module

134

d. Then, a prompt for Upload file will appear at the centre of the window. Click on Choose

File button.

e. A window will pop-up. The image will be in a subfolder named Exercise 1 in the Lab 3

Resources folder (the same folder we added the Sound1 source).

f. Choose the Boing.png file and click Open.
g. You will be returning back to the MIT App Inventor 2 window. Click OK to upload the file.

CSM3313 - Internet of Things | Lab Module

135

h. As you can see now, the Image is currently set to Boing.png

i. Now, we are going to change the Height of Button1. Currently, the height of Button1 is

being set to Automatic. Change this to 50 percent.

j. Next, we need to change the Width of Button1. Set it to Fill parent.

CSM3313 - Internet of Things | Lab Module

136

k. Then, we need to remove the text “Button” on Button1.

Since our phone are still connecting to the MIT App Inventor 2, we can simply Refresh the

Interface of our AI Companion.

References:

1. http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/Mag

icTrickHa ndout.pdf

2. https://appinventor.mit.edu/explore/library

3. https://appinventor.mit.edu/explore/ai2/tutorials

4. https://www.programwithappinventor.org/

5. https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
https://appinventor.mit.edu/explore/library
https://appinventor.mit.edu/explore/ai2/tutorials
https://www.programwithappinventor.org/
https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

CSM3313 - Internet of Things | Lab Module

137

Module 4: Developing Internet of Things App

using MIT App Inventor [3hrs]

Objective: In this lab we are going to go through the steps of creating a MQTT apps. MQTT is the

most commonly used Internet of Things Communication Protocols. We will be implementing this

protocols in our apps.

[Step#01] Create a new project
a. Go to My Projects.

b. Select Start new project

c. A pop-up will appear. Typed in the project name as “MqttApps”.

d. Then, click OK.

a

c

b

d

CSM3313 - Internet of Things | Lab Module

138

[Step#02] Designing the Broker Settings

a. At the Palette under the User Interface group components, choose the Label

and then drag and drop it onto Screen1

b. Change text at the Label1 from Text for Label1 to MQTT APPS

c. Then, change the BackgroundColor to Blue

d. Next, change the FontSize to 24.

e. After that, change the Width of Label1 to Fill parent.

f. To align the text at the centre of the screen, change the TextAlignment to center:1

g. Lastly, change the TextColor to White.

a

b

CSM3313 - Internet of Things | Lab Module

139

h. Then, go to the Palette and expand the Layout group component. Choose the TableArrangement

layout and drag and drop it on Screen1

i. Select the TableArrangement1 at the Components.

j. Click on the button Rename and change it to BrokerSettings.

c

d

g

CSM3313 - Internet of Things | Lab Module

140

k. After that, select the BrokerSettings layout at the Components and change the Rows number

from 2 to 4

l. At the Palette, select a Label at the User Interface. Drag and drop it on the first row, first
column to the BrokerSettings layout.

h

i

j

k

CSM3313 - Internet of Things | Lab Module

141

m. Then, select the Label2 underneath the BrokerSettings and change the Text at the Properties
to Broker URL

n. Add another Label underneath the Broker URL label (Drag and drop it on the second row, first

l

m

CSM3313 - Internet of Things | Lab Module

142

column). Also, change the Text from Text for Label3 to Port. (see figure below)

o. Next, add a TextBox at the column next to the Broker URL label. Repeat the same steps, except

this time add it to the column next to the Port label.

n

o

Repeat the same step to

add another TextBox

CSM3313 - Internet of Things | Lab Module

143

p. Rename the TextBox1 to BrokerURL. Repeat the same step for TextBox2 underneath it except

renaming will be change to Port.

q. After that, on the third row of BrokerSettings layout, we will be adding an Image.

q

p

Repeat the same step

to rename TextBox2

CSM3313 - Internet of Things | Lab Module

144

r. Then, rename Image1 at the Components to Connection

s. Next, add a Picture to the image. You will be given a folder named “Lab 4 Resources”. In the file,

there are several images being provided to you. For this image, choose the disconnect.png file.

Also, change the Width and Height of the picture as show in figure below.

r

s

After uploading the picture,

please resize the width and

height as shown here

CSM3313 - Internet of Things | Lab Module

145

t. Next, we will add a HorizontalArrangement layout to the column next to the Connection Image.

Also, we will be renaming it to ButtonSettings (see figure below)

u. Then, in the ButtonSettings, we will be adding two (2) buttons

v. Rename each respective button as shown in figure below.

t

CSM3313 - Internet of Things | Lab Module

146

w. Also, we will be changing the Text on the both button as Connect and

Disconnect respectively (see figure below)

x. Next, we will align the BrokerSettings layout to the centre. To do this, simply change

the alignment at the Component of Screen1 from AlignHorizontal: Left to

AlignHorizontal: Centre

CSM3313 - Internet of Things | Lab Module

147

CSM3313 - Internet of Things | Lab Module

148

y. Lastly, we will add another two (2) label at the last row and column of the

BrokerSettings. See figure below for configuration at the Properties for both label

Leave it
blank

CSM3313 - Internet of Things | Lab Module

149

[Step#03] Designing LED Status

a. Add a Label underneath the BrokerSettings layout.

b. Change the BackgroundColor to Magenta.

c. Checked on the checkbox for FontBold.

d. Then, change the FontSize to 24.

e. Resize the label Width to Fill parent.

f. Change the Text to “LED STATUS”.

g. Then, we are going to change the TextAlignment to centre: 1

h. Lastly change the TextColor to White.

a

CSM3313 - Internet of Things | Lab Module

150

i. Then, we will add a HorizontalArrangement Layout underneath the Label5

j. Next, add three (3) Image from the User Interface and add it into the

HorizontalArrangement1 as shown in figure below.

k. We will be adding source of Pictures for each of the images. We will be uploading 3

pictures from the Lab 4 Resources which are red-off.png, green- off.png and yellow-

off.png.

i

j

CSM3313 - Internet of Things | Lab Module

151

Assign the pictures sources as follows:

Image1: red-off.png

Image2: green-off.png

Image3: yellow-off.png

Also, we will need to resize the width of the pictures (see figure below)

l. Then, we will be renaming Image1, Image2, and Image3 as shown in the figure below:

CSM3313 - Internet of Things | Lab Module

152

m. Lastly we will be uploading the remaining three (3) images which are red- on.png,

green-on.png and yellow-on.png.

CSM3313 - Internet of Things | Lab Module

153

[Step#04] Coding the Connection Settings

We will be using an extension from https://ullisroboterseite.de/android-AI2-MQTT- en.html . The

extension will be provided in the Lab 4 Resources. We will need to upload the extension to the MIT App

Inventor2 server.

Based on the guide from https://ullisroboterseite.de/android-AI2-MQTT-en.html

a. First, import the extension into the Palette. Go to Extension and click on Import extension.

Choose the extension in the Lab 4 Resources.

b. Then, drag and drop the extension to Screen1. As you can see the extension is a Non-

visible components. Meaning, the extension does not appear on the screen.

https://ullisroboterseite.de/android-AI2-MQTT-en.html
https://ullisroboterseite.de/android-AI2-MQTT-en.html
https://ullisroboterseite.de/android-AI2-MQTT-en.html

CSM3313 - Internet of Things | Lab Module

154

c. Now, switch over to the MIT App Inventor Blocks

d. Then, at the Built-in blocks, select the Variable blocks. Choose the initialize global

name to block and drag and drop it onto the Viewer. Change the name to TopicState.

e. After that, go to Text blocks and choose the String block. In the String block typed in

“led/state” and attached it to the initialize global block that we add previously.

CSM3313 - Internet of Things | Lab Module

155

f. Next, go to the Components block and select the BtnConn component. Choose the

when BtnConn.Click block and drag then drop it to the Viewer

g. Go to the UrsAI2MQTT1 Extension and select the set UrsAI2MQTT1.Broker block and

the set UrsAI2MQTT1.Port block. Then, arrange these blocks to append under the

when BtnConn.Click block

CSM3313 - Internet of Things | Lab Module

156

h. Then, go to the Component block and select the TextBox BrokerURL and TextBox

Port. Choose the block BrokerURL.Text and Port.Text and append it at the blocks we

set in the previous step.

CSM3313 - Internet of Things | Lab Module

157

i. After that, go to the UrsAI2MQTT1 extension component and select the call

UrsAI2MQTT1.ConnectWithLastWill block. Append it under the Broker and Port

settings.

j. Then, go to Logic built-in block and select the Boolean true block and append it at

the call UrsAI2MQTT1.ConnectWithLastWill block as shown in the figure below.

CSM3313 - Internet of Things | Lab Module

158

k. Now, we will configure the UrsAI2MQTT1.ConnectWithLastWill as shown in the

figure below.

Hover your mouse at the
initialize global TopicState
and click on the get global

TopicState block

Add a Number block

from the Math built-

in block

Add a String block

from the Text built-

in block

CSM3313 - Internet of Things | Lab Module

159

[Step#05] Coding the Topic Settings

a. Then, go to Variables built-in block and select initialize global name to block. Next, select create

empty list block from the Lists built-in block.

b. Next, go to the Procedures built-in blocks and the to procedure do block. Drag and drop to the

Viewer. The click at the Setting button at the to procedure do block. And add 3 inputs to the

block as shown in figure below.

CSM3313 - Internet of Things | Lab Module

160

c. After that, go to the Lists block and select the add items to list block. And append in underneath

the procedure block we add in the previous step.

d. Go to the Text block and select the join block. Append it to the add items to list block at the item.

Set the string at the join block to three string as shown in the figure below.

e. Then, we will need to set the input from the procedure to the join block as show in figure below.

Hover your mouse
at the RS input and

select the get RS
block

CSM3313 - Internet of Things | Lab Module

161

f. Next, go to the Control built-in block and choose the if then block. Drag and drop it underneath

the add items to list block. Then, go to the Math built-in block and select the comparator block

as shown in the figure below and append it to the if then block.

g. After that, add the go to Lists built-in block and select the length of list block to the comparator

block as shown in figure below. Next to the length of list, append the get global Trace (hover to

the initialize global Trace and choose get global Trace block. Make sure to choose the

comparator value as shown the figure below.

Repeat the
previous step for
all the input from

the procedure

CSM3313 - Internet of Things | Lab Module

162

h. Then, at the Lists built-in block, choose the remove list item block and attached under the

comparator block. Also, add a number to the comparator block as shown in figure below.

i. At the remove list item block, append the get global Trace block at the list and append a number

block at the index.

j. Next, add a set lblTrace.Text block underneath the remove list item block. Then, append the

join items using separator block to the set lblTrace.Text block.

k. Lastly, append a String block with input “\n” to the the join items using separator block as well

as the get global Trace block.

l. The end result should look something like the figure below

CSM3313 - Internet of Things | Lab Module

163

[Step#06] Coding the Connection Change Settings
a. Add a initialize global as follows:

CSM3313 - Internet of Things | Lab Module

164

b. Then, add the following blocks.

CSM3313 - Internet of Things | Lab Module

165

[Step#07] Coding the Received Payload

CSM3313 - Internet of Things | Lab Module

166

[Step#08] Coding the Disconnect Button

References:

1. http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1

/MagicTrick Handout.pdf

2. https://appinventor.mit.edu/explore/library

3. https://appinventor.mit.edu/explore/ai2/tutorials

4. https://www.programwithappinventor.org/

5. https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
https://appinventor.mit.edu/explore/library
https://appinventor.mit.edu/explore/ai2/tutorials
https://www.programwithappinventor.org/
https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

CSM3313 - Internet of Things | Lab Module

167

Module 5: Data Visualization using MIT App

Inventor [3hrs]

Objective: In this lab we are going to go through steps by steps on creating a data visualization. We

will be using a visualization chart from ThingSpeak and a MQTT Client Desktop to simulate data

transfer. In this lab we will be utilising the MQTT Key instead of the API Key.

1. Create an account at ThingSpeak. Go to this link https://thingspeak.com/login

2. Fill in your details in the fields below

https://thingspeak.com/login

CSM3313 - Internet of Things | Lab Module

168

3. You will receive a verification email from mathworks. Click on Verify your email button.

4. Once, you have verified your email, you will be prompt to keyed in your Password.

5. After that you will be brought to your channels as shown in figure below. Click on New

Channel button.

6. Fill in the name as Sensor1, and change the Field Label 1 to Temperature and scroll down

to Save Channel.

CSM3313 - Internet of Things | Lab Module

169

7. Your Channel will look something like this. Please take note of the channel ID.

8. Now, change the access to the channel to be publically available.

CSM3313 - Internet of Things | Lab Module

170

9. Go to Sharing tab and choose the Share channel view with everyone.

10. Now, the channel is ready for the public to Publish and Subscribe.

CSM3313 - Internet of Things | Lab Module

171

11. Let’s create our app. Login to your MIT App Inventor account and Start new project called

Data_Visualization. Click OK to continue.

12. Add a label to Screen1. Change the following Properties for Label 1:

a. BackgroundColor: Orange

b. FontBold: checked

c. FontSize: 24.0

d. Width: Fill parent

e. Text: Sensor1 Data

f. TextAlignment center:1

13. Then, add a WebViewer as shown in figure below.

CSM3313 - Internet of Things | Lab Module

172

14. Then, go to the MIT App Inventor Blocks and add the following blocks.

CSM3313 - Internet of Things | Lab Module

173

15. Go back to your ThingSpeak account and click on Field 1 Chart.

16. A new tab will open the Field 1 Chart as show in figure below. Copy the URL to the Chart.

17. Next, paste the URL in the String block

CSM3313 - Internet of Things | Lab Module

174

18. Lastly, we will test it in our Android device. As you can see there are no chart being plot

because there is no data being sent to ThingSpeak.

19. Now, we will use MQTTBox to transfer data to ThingSpeak. Launch your MQTTBox. And

click on Create MQTT Client

20. Change the following settings:

a. MQTT Client Name: ThingSpeak Client

b. Protocol: mqtt/tcp

CSM3313 - Internet of Things | Lab Module

175

c. Host: mqtt.thingspeak.com

d. Username: <yourname> It can be anything

e. Password:<MQTT API Key>

21. Now, we will use MQTTBox to transfer data to ThingSpeak. Launch your MQTTBox. And

click on Create MQTT Client

22. To retrieve the MQTT API Key, go to ThingSpeak, click My Profile and scroll down till you

see MQTT API Key as shown in figure below. Copy and paste the key as Password

CSM3313 - Internet of Things | Lab Module

176

23. Make sure that your MQTTBox is successfully connected to the ThingSpeak broker.

24. Now, to test we will be publishing and subscribing data at the MQTTBox. To publish data to a

ThingSpeak broker we must follow the following settings:

channels/<channelID>/publish/fields/field<fieldnumber>/<apikey>

CSM3313 - Internet of Things | Lab Module

177

25. We will publish three (3) data which are 32, 35 and 37.

26. Make sure that we received a data 32, 35 and 37 at the subscriber.

channels/<channelID>/subscribe/fields/field<fieldnumber>/<apikey>

CSM3313 - Internet of Things | Lab Module

178

Now, check at your AI Companion, you should be able to see the chart.

CSM3313 - Internet of Things | Lab Module

179

References:

1. http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTr

ickHa ndout.pdf

2. https://appinventor.mit.edu/explore/library

3. https://appinventor.mit.edu/explore/ai2/tutorials

4. https://www.programwithappinventor.org/

5. https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/

6. https://www.mathworks.com/help/thingspeak/use-desktop-mqtt-client-to-

publish-to-a- channel.html

http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
http://appinventor.mit.edu/explore/sites/all/files/teachingappcreation/unit1/MagicTrickHandout.pdf
https://appinventor.mit.edu/explore/library
https://appinventor.mit.edu/explore/ai2/tutorials
https://www.programwithappinventor.org/
https://www.amazon.com/Learning-MIT-App-Inventor-Hands-On/dp/0133798631/
https://www.mathworks.com/help/thingspeak/use-desktop-mqtt-client-to-publish-to-a-channel.html
https://www.mathworks.com/help/thingspeak/use-desktop-mqtt-client-to-publish-to-a-channel.html
https://www.mathworks.com/help/thingspeak/use-desktop-mqtt-client-to-publish-to-a-channel.html

